Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiology ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583430

RESUMO

INTRODUCTION: Atrial fibrillation (AF) often occurs in patients with rheumatic mitral stenosis (RMS) and is associated with adverse clinical outcomes. Mitral valve mean pressure gradient (MVMPG) is utilized as an indicator to assess the severity of mitral stenosis and its hemodynamic implications. This study aims to investigate the association between MVMPG and AF in individuals with RMS. METHODS: We conducted a retrospective analysis of medical records from 360 consecutive patients diagnosed with RMS at the First Affiliated Hospital of Wenzhou Medical University between January 2018 and January 2023. Using both univariate and multivariate logistic regression models, the relationship between MVMPG and AF was evaluated. Restricted cubic splines were employed to test for linearity, and stratified and interaction analyses were performed to evaluate the stability of this relationship among different subgroups. RESULTS: Based on the MVMPG levels, 360 RMS patients in total were categorized into three groups for the analysis: Q1 (<5mmHg), Q2 (5-10 mmHg), and Q3 (>10 mmHg). The average age was 60.6 years (Q1: 66.1, Q2: 61.9, Q3: 55.8), and 70.8% were female. The prevalence of AF was 39.6%, 56.5%, and 63.2% in Q1, Q2, and Q3, respectively. After adjusting for potential confounders, a significant association between MVMPG and AF was observed. In Q2, there was a 119% increase in AF (OR 2.19, 95% CI: 1.01-4.75), while in Q3, there was a 238% increase (OR 3.38, 95% CI: 1.39-8.19), compared to Q1. The relationship between MVMPG and AF was linear (p = 0.503). These results remained consistent in each subgroup analysis. CONCLUSION: Our study reveals a significant positive association between MVMPG and AF in patients with RMS, which holds important clinical implications. It is necessary to conduct further research.

2.
Environ Geochem Health ; 46(4): 117, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478119

RESUMO

Continuous exposure to airborne pesticides causes their gradual accumulation in the human body, eventually posing a threat to human health. To the best of our knowledge, risk assessment study of pesticide non-occupational exposure to residents in agricultural areas has not been conducted in China. In this study, air samples (gas and dust) were collected from inside and outside residences of seven households and an area near the field in a grain-growing area (wheat and maize rotation) for eight months, and the pesticides present were examined both qualitatively and quantitatively. Using a 95% confidence interval, 9 out of 16 pesticides were detected, namely acetamiprid, acetochlor, atrazine, flucarbazone-sodium, imidacloprid, methyldisulfuron-methyl, nicosulfuron-methyl, pendimethalin, and beta-cyhalothrin, and their safety was subsequently evaluated. The results showed that the inhalation exposure of households to beta-cyhalothrin exceeded the acceptable range in the first residential, and the excess lifetime cancer risk of acetochlor inhalation exposure in six households and area around the field exceeds 1E-6, which highlights the need to strengthen preventive screening for cancer risk.


Assuntos
Neoplasias , Nitrilas , Praguicidas , Piretrinas , Toluidinas , Humanos , Praguicidas/toxicidade , Praguicidas/análise , Exposição Ambiental/análise , Medição de Risco
3.
Environ Sci Pollut Res Int ; 31(14): 21845-21856, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38400979

RESUMO

Glyphosate-based herbicides (GBHs) are common herbicide formulations used in the field and are increasingly used worldwide with the widespread cultivation of herbicide-tolerant genetically modified crops. As a result, the risk of arthropod exposure to GBH is increasing rapidly. Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) is a common predatory natural enemy in agroecosystems, which is exposed to GBH (Roundup®) while preying on pests. To identify and characterize the potential effects of GBH on C. pallens, the life tables of C. pallens larvae and adults fed with GBH were constructed. Moreover, the effects of GBH treatment on the expression of genes involved in insulin signalling in adults were analyzed using qRT-PCR. The results showed that GBH treatment altered the pupal period and preadult stage of C. pallens larvae. However, it did no effect on longevity, fecundity, and population parameters and two insulin receptor genes (InR1, InR2), a serine/threonine kinase (Akt), an extracellular-signal-regulated kinase (erk), and vitellogenin (Vg1) expression of C. pallens. Adults feeding on GBH significantly altered development, longevity, and differences in the mean generation time of the F0 generation. However, GBH feeding only minimally influenced the growth and population parameters of the F1 generation. In addition, InR1, InR2, erk, and Vg1 expression in the F0 generation were downregulated on the fifth day of feeding on GBH. Furthermore, the expression levels of InR1, InR2, Akt, erk, and Vg1 in C. pallens decreased with the increase of GBH concentration, although the expression levels returned to control levels on the tenth day. Overall, the consumption of the GBH by larvae and adults of C. pallens had minimal effect on the growth and population parameters of C. pallens. The findings of this study can provide a reference for elucidating the environmental risks of GBH, guiding the optimal use of glyphosate in agricultural practices in the future.


Assuntos
60658 , Herbicidas , Animais , Herbicidas/farmacologia , Longevidade , Produtos Agrícolas , Proteínas Proto-Oncogênicas c-akt , Plantas Geneticamente Modificadas , Fertilidade , Larva , Insetos
4.
J Hazard Mater ; 466: 133656, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306832

RESUMO

Pesticides and microplastics (MPs) derived from mulch film in agricultural soil can independently impact soil ecology, yet the consequences of their combined exposure remain unclear. Therefore, the effects of simultaneous exposure to commonly used pesticides (imidacloprid and flumioxazin) and aged mulch film-derived MPs on soil microorganisms and element cycles in cotton fields were investigated. The combined exposure influenced soil microorganisms, alongside processes related to carbon, nitrogen, and phosphorus cycles, exhibiting effects that were either neutralized or enhanced compared to individual exposures. The impact of pesticides in combined exposure was notably more significant and played a dominant role than that of MPs. Specifically, combined exposure intensified changes in soil bacterial community and symbiotic networks. The combined exposure neutralized NH4+, NO3-, DOC, and A-P contents, shifting from 0.33 % and 40.23 % increase in MPs and pesticides individually to a 40.24 % increase. Moreover, combined exposure resulted in the neutralization or amplification of the nitrogen-fixing gene nifH, nitrifying genes (amoA and amoB), and denitrifying genes (nirS and nirK), the carbon cycle gene cbbLG and the phosphorus cycle gene phoD from 0.48 and 2.57-fold increase to a 2.99-fold increase. The combined exposure also led to the neutralization or enhancement of carbon and nitrogen cycle functional microorganisms, shifting from a 1.53-fold inhibition and 10.52-fold increase to a 6.39-fold increase. These findings provide additional insights into the potential risks associated with combined pesticide exposure and MPs, particularly concerning soil microbial communities and elemental cycling processes.


Assuntos
Microbiota , Praguicidas , Praguicidas/toxicidade , Solo , Microplásticos , Plásticos/toxicidade , Carbono , Nitrogênio , Fósforo , Microbiologia do Solo
5.
Arch Insect Biochem Physiol ; 115(1): e22073, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288485

RESUMO

Although neonicotinoids are widely used and important insecticide, there are growing concerns about their effect on nontarget insects and other organisms. Moreover, the effects of nitenpyram (NIT), a second generation of neonicotinoid insecticides, on Chrysopa pallens are still unclear. Therefore, this study purposed to investigate the acute toxicity of NIT to C. pallens using the spotting method. To examine the potential effects of a sublethal dose of NIT (LD30 , 1.85 ng of active ingredient per insect) on C. pallens, we constructed the life tables and analyzed the transcriptome data. The life table results showed that the period of second instar larvae, adult pre-oviposition period and total pre-oviposition period were significantly prolonged after exposure to sublethal dose of NIT, but had no significant effects on the other instars, longevity, oviposition days, and fecundity. The population parameters, including the preadult survival rate, gross reproduction rate, net reproductive rate, the intrinsic rate of increase, and finite rate of increase, were not significantly affected, and only the mean generation time was significantly prolonged by NIT. Transcriptome analysis showed that there were 68 differentially expressed genes (DEGs), including 50 upregulated genes and 18 downregulated genes. Moreover, 13 DEGs related to heat shock protein, nose resistant to fluoxetine protein 6, and prophenoloxidas were upregulated. This study showed the potential effects of sublethal doses of NIT on C. pallens and provided a theoretical reference for the comprehensive application of chemical and biological control in integrated pest management.


Assuntos
Inseticidas , Feminino , Animais , Neonicotinoides , Inseticidas/toxicidade , Insetos/genética , Reprodução
6.
Ecotoxicol Environ Saf ; 262: 115180, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37379665

RESUMO

Heavy metals (HMs) and microplastics (MPs) are two emerging factors threatening global food security. Whether long-term MPs pollution will affect the distribution of HMs and their resistance genes (MRGs) in soil is unknown. Here, metagenomic approach was used to decipher the fate of MRGs in cropland soils with long-term film MPs residues. Similar distribution pattern of MRGs was formed in long-term film MPs contaminated soil. A total of 202 MRG subtypes were detected, with resistance genes for Multimetal, Cu, and As being the most prevalent type of MRGs. MRGs formed a modular distribution of five clusters centered on MRGs including ruvB in long-term film MPs contaminated soil. MRGs also formed tight co-occurrence networks with mobile genetic elements (MGEs: integrons, insertions and plasmids). Redundancy analysis showed that HMs together with microbial communities and MGEs affected the distribution of MRGs in soil. Thirteen genera including Pseudomonas were identified as potential hosts for MRGs and MGEs. The research provides preliminary progress on the synergistic effect of HMs and MPs in affecting soil ecological security. The synergistic effect of MPs and HMs needs to be considered in the remediation of contaminated soils.

7.
Chemosphere ; 312(Pt 1): 137235, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36375616

RESUMO

Agricultural soils and microplastics (MPs) are hotspots for antibiotic resistance genes (ARGs). Plastic mulch is the most important source of MPs in agricultural soil. ARGs, mobile genetic elements (MGEs), and their host profiles in long-term mulch MP-exposed soils remain unclear. In the present study, metagenomics was used to investigate the distribution patterns of ARGs and MGEs in eight Chinese provinces with a long history of plastic mulch use. A total of 204 subtypes of ARGs and thousands of MGEs (14 integrons, 28 insertions, and 2993 plasmids) were identified. A similar diversity of ARGs was found among MPs film-contaminated sites. The types of ARGs with a high abundance were more concentrated, and multidrug resistance genes were the dominant ARGs. Soils from regions with a longer history of plastic film use (such as Xinjiang province) had a higher abundance of ARGs and MGEs. The distribution of ARGs and MGEs exhibited a modular network distribution pattern. A total of 27 ARG subtypes and 29 MGEs showed co-occurrence network relationships. More than 10 common hosts of ARGs and MGEs, such as Pseudomonas, were found, and their abundances were highest in three provinces, including Xinjiang. This study may help elucidate the impact mechanism of long-term MP residues on the occurrence and spread of ARGs in soil.


Assuntos
Antibacterianos , Plásticos , Antibacterianos/farmacologia , Microplásticos , Genes Bacterianos , Microbiologia do Solo , Resistência Microbiana a Medicamentos/genética , Solo/química
8.
Environ Res ; 214(Pt 4): 114133, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35995229

RESUMO

Plastic pollution in the soil ecosystem is currently receiving worldwide attention. However, little is known whether the presence of microplastics (MPs) in soil will affect the environmental behavior of pesticide residues in soil. Here, the effect of the addition of new mulch MPs (New-MPs), aged mulch MPs (Aged-MPs) and biodegradable mulch MPs (BioD-MPs) on the adsorption and degradation behaviors of two pesticides (imidacloprid and flumioxazin) in soil was investigated. Three MPs slowed down rapid adsorption stage of pesticides in soil and delayed the time to reach adsorption equilibrium. Adsorption rates: Soil > Soil + New-MPs > Soil + Aged-MPs > Soil + BioD-MPs. Three MPs enhanced the adsorption strength of the soil system for the two pesticides, and the aging treatment of the MPs enhanced this effect. Three MPs affected the degradation process of the two pesticides. New-MPs promoted the degradation of two pesticides imidacloprid and flumioxazin, and the degradation half-lives were shortened to 0.93 and 0.85 times, respectively; while Aged-Mps and BioD-MPs delayed the degradation process of two pesticides, and the degradation half-lives were extended to 1.64 times and 1.21 times, respectively. The effect was more significant with the increase of MPs and pesticides concentration. Pesticide polarity, surface structure and functional groups of MPs are potentially important reasons for the differences in adsorption and degradation of MPs-soil systems. Our findings provide a deep insight into understanding the mechanism of interaction between MPs and pesticide residues in soil environment.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Adsorção , Ecossistema , Microplásticos , Resíduos de Praguicidas/análise , Praguicidas/análise , Plásticos , Solo/química , Poluentes do Solo/análise
9.
Ecotoxicol Environ Saf ; 233: 113338, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228031

RESUMO

As microplastics became the focus of global attention, the hazards of plastic plasticizers (PAEs) have gradually attracted people's attention. Agricultural soil is one of its hardest hit areas. However, current research of its impact on soil ecology only stops at the microorganism itself, and there is still lack of conclusion on the impact of soil metabolism. To this end, three most common PAEs (Dimethyl phthalate: DMP, Dibutyl phthalate: DBP and Bis (2-ethylhexyl) phthalate: DEHP) were selected and based on high-throughput sequencing and metabolomics platforms, the influence of PAEs residues on soil metabolic functions were revealed for the first time. PAEs did not significantly changed the alpha diversity of soil bacteria in the short term, but changed their community structure and interfered with the complexity of community symbiosis network. Metabolomics indicated that exposure to DBP can significantly change the soil metabolite profile. A total of 172 differential metabolites were found, of which 100 were up-regulated and 72 were down-regulated. DBP treatment interfered with 43 metabolic pathways including basic metabolic processes. In particular, it interfered with the metabolism of residual steroids and promoted the metabolism of various plasticizers. In addition, through differential labeling and collinear analysis, some bacteria with the degradation potential of PAEs, such as Gordonia, were excavated.


Assuntos
Ácidos Ftálicos , Poluentes do Solo , Dibutilftalato/toxicidade , Ésteres , Humanos , Metabolômica , Ácidos Ftálicos/toxicidade , Plásticos , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
10.
Ecotoxicol Environ Saf ; 230: 113129, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34979310

RESUMO

The large-scale commercial cultivation of genetically modified (GM) cotton has brought significant economic and environmental benefits. However, GM crops must undergo strict environmental monitoring and long-term observation. An important natural enemy insect in cotton fields, Geocoris pallidipennis, can ingest the Bt protein expressed in GM cotton by feeding on herbivorous insects that feed on the cotton. However, the potential risk of GM cotton to G. pallidipennis is still unclear. We here evaluated the effects of Bt cotton expressing the Cry1Ac/1Ab protein on nymphs and adults G. pallidipennis. Cry1Ac protein was detected in the midgut of the cotton bollworm, Helicoverpa armigera, after it ingested Bt cotton, and in the midgut of G. pallidipennis nymphs and adults preying on Bt-fed H. armigera. However, the survival rate, growth, development, and fecundity of G. pallidipennis were not adversely affected. Furthermore, G. pallidipennis cadherins, and those genes related to detoxification, antioxidant activity, nutrient utilization, and immune function were not differentially expressed in response to Cry1Ac exposure. Finally, we showed that Cry1Ac could not bind to brush border membrane vesicles (BBMV) proteins in G. pallidipennis nymphs or adults. In summary, these results indicate that the potential negative effect of transgenic Cry1Ac/1Ab cotton on the insect redator G. pallidipennis is negligible.

11.
J Hazard Mater ; 423(Pt B): 127258, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34844367

RESUMO

Research on microplastic pollution of terrestrial soils is catching up with the aquatic environment, especially agricultural soil systems. Plastic residues have caused various environmental problems in mulch film extensively used agricultural areas. However, studies focusing specifically on the potential influence of mulch film residues on the metabolic cycle of soil systems have yet to be conducted. Here, high-throughput sequencing combined with metabolomics were first used to study the effects of residual mulch on soil microbial communities and related metabolic functions. Plastic film treatment did not significantly affect soil physicochemical properties including pH, organic matter and nitrogen, etc in short term. However, it did significantly changed overall community structure of soil bacteria, and interfered with complexity of soil bacterial symbiosis networks; exposure time and concentration of residues were particularly important factors affecting community structure. Furthermore, metabolomics analysis showed that film residue significantly changed soil metabolite spectrum, and interfered with basic carbon and lipid metabolism, and also affected basic cellular processes such as membrane transport and, in particular, interfered with the biosynthesis of secondary metabolites, as well as, biodegradation and metabolism of xenobiotics. Additionally, through linear discriminant and collinear analysis, some new potential microplastic degrading bacteria including Nitrospira, Nocardioidaceae and Pseudonocardiaceae have been excavated.


Assuntos
Plásticos , Solo , Agricultura , Biodegradação Ambiental , Metabolômica , Microbiologia do Solo
12.
Sci Total Environ ; 790: 147847, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34082325

RESUMO

The predatory ladybird beetle, Harmonia axyridis, is a predominant natural enemy of pest insects in cotton fields. Commercialization of genetically modified crops has promoted the increased use of the herbicide glyphosate. In this study, to assess potential negative effects of glyphosate on beneficial non-target organisms in cotton fields, we first examined how glyphosate exposure affected the development and endosymbiotic bacterial community of H. axyridis. The results showed that the survival rate, development duration, pupation rate and emergence rate of H. axyridis under low and high concentrations of glyphosate exposure were not significantly changed, but glyphosate did significantly reduce the body weight of H. axyridis. Based on 16S rRNA sequencing, there were no significant differences in the diversity or richness of the endosymbiotic bacteria of H. axyridis before and after glyphosate exposure. The dominant bacterial phyla Firmicutes and Proteobacteria and genera Staphylococcus and Enterobacter remained the same regardless of treatment with glyphosate, however the abundance and copy number of these bacteria were altered. Glyphosate treatment significantly reduced the abundance and gene copy number of Staphylococcus and increased the abundance and gene copy number of Enterobacter. This is the first report demonstrating that glyphosate can reduce the body weight H. axyridis and alter the bacterial endosymbiont community by affecting the abundance and gene copy number of dominant bacteria.


Assuntos
Besouros , Animais , Bactérias/genética , Peso Corporal , Produtos Agrícolas , Glicina/análogos & derivados , Larva , Plantas Geneticamente Modificadas , Comportamento Predatório , RNA Ribossômico 16S/genética
13.
Front Microbiol ; 12: 670383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149656

RESUMO

Bacteria and insects have a mutually beneficial symbiotic relationship. Bacteria participate in several physiological processes such as reproduction, metabolism, and detoxification of the host. Adelphocoris suturalis is considered a pest by the agricultural industry and is now a major pest in cotton, posing a serious threat to agricultural production. As with many insects, various microbes live inside A. suturalis. However, the microbial composition and diversity of its life cycle have not been well-studied. To identify the species and community structure of symbiotic bacteria in A. suturalis, we used the HiSeq platform to perform high-throughput sequencing of the V3-V4 region in the 16S rRNA of symbiotic bacteria found in A. suturalis throughout its life stages. Our results demonstrated that younger nymphs (1st and 2nd instar nymphs) have higher species richness. Proteobacteria (87.06%) and Firmicutes (9.43%) were the dominant phyla of A. suturalis. At the genus level, Erwinia (28.98%), Staphylococcus (5.69%), and Acinetobacter (4.54%) were the dominant bacteria. We found that the relative abundance of Erwinia was very stable during the whole developmental stage. On the contrary, the relative abundance of Staphylococcus, Acinetobacter, Pseudomonas, and Corynebacterium showed significant dynamic changes at different developmental stages. Functional prediction of symbiotic bacteria mainly focuses on metabolic pathways. Our findings document symbiotic bacteria across the life cycle of A. suturalis, as well as differences in both the composition and richness in nymph and adult symbiotic bacteria. Our analysis of the bacteria in A. suturalis provides important information for the development of novel biological control strategies.

14.
Pest Manag Sci ; 77(7): 3406-3418, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33786972

RESUMO

BACKGROUND: Aphis gossypii, a polyphagous and recurrent pest induced by pesticides, causes tremendous loss crop yields each year. Previous studies on the mechanism of pesticide-induced sublethal effects mainly focus on the gene level. The symbiotic bacteria are also important participants of this mechanism, but their roles in hormesis are still unclear. RESULTS: In this study, life table parameters and 16S rRNA sequencing were applied to evaluate the sublethal and transgenerational effects of sulfoxaflor on adult A. gossypii after 24-h LC20 (6.96 mg L-1 ) concentration exposure. The results indicated that the LC20 of sulfoxaflor significantly reduced the finite rate of increase (λ) and net reproductive rate (R0 ) of parent generation (G0), and significantly increased mean generation time (T) of G1 and G2, but not of G3 and G4. Both reproductive period and fecundity of G1 and G2 were significantly higher than those of the control. Furthermore, our sequencing data revealed that more than 95% bacterial communities were dominated by the phylum Proteobacteria, in which the maximum proportion genus was the primary symbiont Buchnera and the facultative symbiont Arsenophonus. Compared to those of the control, the abundance and composition of symbiotic bacteria of A. gossypii for three successive generations (G0-G2) were changed after G0 A. gossypii was exposed to sulfoxaflor: the diversity of the bacterial community was decreased, but the abundance of Buchnera was increased (G0), while the abundance of Arsenophonus was decreased. Contrary to G0, G1 and G2 cotton aphid exhibited an increased relative abundance of Arsenophonus in the sublethal treatment group. CONCLUSION: Taken together, our results provide an insight into the interactions among pesticide resistance, aphids, and symbionts, which will eventually help to better manage the resurgence of A. gossypii. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Animais , Afídeos/genética , Humanos , Tábuas de Vida , Piridinas , RNA Ribossômico 16S/genética , Compostos de Enxofre/toxicidade
15.
Pest Manag Sci ; 77(6): 2710-2718, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33492720

RESUMO

BACKGROUND: Endosymbiotic bacteria have been reported to mediate interactions between parasitoids and their insect hosts. How parasitic wasps influence changes in host microbial communities and the relationship between them are of great importance to the study of host-parasitoid co-evolutionary and ecological interactions. However, these interactions remain largely unreported for interactions between Aphis gossypii and Lysiphlebia japonica. RESULTS: In this study, we characterize the bacterial microbiota of L. japonica wasps at different developmental stages and monitor changes over time in the bacterial microbiota of their parasitized and nonparasitized aphid hosts, using metagenomic analysis of 16S rDNA sequencing data. Proteobacteria, Firmicutes, and Actinobacteria were the three most abundant bacterial phyla identified in L. japonica. We found that parasitism was associated with an increased abundance of Buchnera nutritional endosymbionts, but decreased abundance of Acinetobacter, Arsenophonus, Candidatus_Hamiltonella, and Pseudomonas facultative symbionts in aphid hosts. Functional analysis of enriched pathways of parasitized aphids showed significant differences in the 'transport and metabolism of carbohydrates' and 'amino acid, lipid, and coenzyme biosynthesis' pathways. Notably, the composition of symbiotic bacteria in wasp larvae was highly similar to that of their aphid hosts, especially the high abundance of Buchnera. CONCLUSION: The results provide a conceptual framework for L. japonica interactions with A. gossypii in which the exchange of symbiotic microbes provides a means by which microbiota can potentially serve as evolutionary drivers of complex, multilevel interactions underlying the ecology and co-evolution of these hosts and parasites. © 2021 Society of Chemical Industry.


Assuntos
Afídeos , Buchnera , Microbiota , Vespas , Animais , Bactérias/genética , Simbiose
16.
J Hazard Mater ; 405: 124275, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33092881

RESUMO

Understanding of neonicotinoid insecticides toxicity on non-target organisms, such as bees, has indirectly promoted their soil treatment use. However, their effect on soil ecosystems haven't fully understood. Here, based on 16S rRNA high-throughput sequencing and metagenomics, the effects of neonicotinoid insecticide thiamethoxam on bacterial communities and metabolic functions in two types of soils were studied. Thiamethoxam treatment significantly affected soil bacterial abundance, reduced microbial diversity, and changed the bacterial community structure in the short term, and the structure soon returned to a stable state. Soil type and time were important factors affecting bacterial community structure. Some plant growth-promoting rhizosphere bacteria (PGPR) including Actinobacteria were found, and their populations were reduced, while pollutant-degrading bacteria including Firmicutes were also found, and their populations were increased. Based on metagenomics analysis, thiamethoxam treatment insignificantly promoted or inhibited multiple metabolic processes, but gene abundance of some key processes significantly changed. Subtypes of 18 biodegradation genes (BDGs) and 5 pesticide degradation genes (PDGs) were identified. Thiamethoxam treatment significantly increased the abundance of BDGs and PDGs, including cytochrome P450. Potential hosts of P450 degradation genes, including the genus Rhodococcus, were discovered. Conclusions of this study will promote safety evaluation and degradation-related research on neonicotinoid insecticides in soil.


Assuntos
Inseticidas , Animais , Bactérias/genética , Abelhas , Ecossistema , Inseticidas/análise , Inseticidas/toxicidade , Neonicotinoides/toxicidade , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Tiametoxam
17.
Pest Manag Sci ; 76(6): 2190-2197, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31965754

RESUMO

BACKGROUND: Neonicotinoid insecticides (NIs) have been recently banned in some countries because of increased pest resistance and deleterious risks to non-target organisms. Recent studies considered all parts of crops as a whole part in plant protection. However, there are few reports focused on the distribution and metabolic trends of NIs on target feeding sites of different pests in apple orchards. RESULTS: The spatial and temporal distribution, absorption, degradation, and metabolism of three NIs, imidacloprid, acetamiprid, and thiamethoxam, on different parts of apple trees were studied under foliar spray and root irrigation treatments. In the spray treatment, the initial average concentration ratios (TCRs) were 31.6% for lower shoots, 23.3% for upper leaves, 23.2% for upper shoots, 21.0% for lower leaves, and 0.5% and 0.4% for upper and lower fruits, respectively. The average half-lives of the three NIs were 2.9 days for shoots, 7.4 days for leaves, and 10.8 days for fruits. The degradation rate of shoots was 2.5 times that of leaves, and 3.6 times that of fruits. Imidacloprid olefin and N-methyl acetamiprid were two of the main metabolites. In the root treatment, both roots and soils had high TCRs during the whole sampling period. Only imidacloprid was transmitted to above-ground parts of the plants, with TCRs of 0.38-50.94%. CONCLUSION: This study found significant differences in spatial and temporal distribution, degradation, metabolism, and trends of NIs on different pest target sites of apple trees. The data obtained may help promote scientific control of target pests and evaluation of safety for non-target species in orchards. © 2020 Society of Chemical Industry.


Assuntos
Malus , Inseticidas , Neonicotinoides , Nitrocompostos , Folhas de Planta , Tiametoxam
18.
Food Chem ; 311: 125871, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786004

RESUMO

Neonicotinoid insecticides (NIs) are widely used. However they produce high levels of residues and are toxic to non-target organisms, especially when their metabolites exhibit comparable or elevated toxicities. In this study, we established a multi-residue analytical method for analyzing 20 compounds - 8 NIs and their 11 major toxic metabolites. QuEChERS pretreatment and ultra-high-performance liquid chromatography-tandem mass spectrometry were used to detect residues in fruits, vegetables and cereals. Determination time was shortened to 6 min. Average recoveries of all compounds were in the range of 90.1-105.5%, with relative standard deviations lower than 15.0% and the limit of quantitation being 10 µg kg-1. For the first time, 8 NIs and 11 major toxic metabolites were grouped simultaneously, such that the matrix effect of analytes was satisfactorily corrected using their own isotopically labeled molecules; other NIs and metabolites in the same group were also corrected. This is the first report that simultaneously quantified multiple metabolites of eight NIs in multiple matrices.


Assuntos
Grão Comestível/química , Frutas/química , Inseticidas/análise , Marcação por Isótopo/métodos , Neonicotinoides/análise , Verduras/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Inseticidas/metabolismo , Neonicotinoides/metabolismo , Resíduos de Praguicidas/análise , Padrões de Referência , Espectrometria de Massas em Tandem/métodos
19.
J Agric Food Chem ; 67(45): 12374-12381, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31613611

RESUMO

The uptake, distribution, metabolism, and degradation of three neonicotinoid insecticides (NIs)-imidacloprid (IMI), acetamiprid (ACE), and thiamethoxam (THI) in different parts of cotton plants were investigated under field conditions. Insecticides were either applied by foliar spraying or root irrigation. Foliar application resulted in high tissue concentration (average tissue concentration ratio, TCR: 46.78-68.61% for leaves and 12.2-31.40% for flowers). The flowers showed high NI residual. The metabolism and trends of NIs in different parts of cotton were reported here for the first time. Metabolites, toxic to bees, were detected in the flowers. The translocation factor was around 0.004 for the spray treatment and 0.2-0.7 for the root irrigation treatment. The average root concentration factors of IMI, ACE, and THI were 0.838, 8.027, and 1.014, respectively, indicating that the three NIs can be transported from the soil to the plant. The high concentrations of NIs and their metabolites in flowers indicate exposure risk to pollinators, such as bees.


Assuntos
Gossypium/metabolismo , Inseticidas/química , Inseticidas/metabolismo , Neonicotinoides/química , Neonicotinoides/metabolismo , Animais , Abelhas/efeitos dos fármacos , Transporte Biológico , Flores/metabolismo , Gossypium/química , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo
20.
Pest Manag Sci ; 75(11): 3024-3030, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30891873

RESUMO

BACKGROUND: Phytophthora capsici is a devastating pathogen for crop. Cellulose synthase 3 (CesA3) is a target for many potential fungicides such as valinamide derivatives. However, the 3-dimensional structure (3-DS) of CesA3 in Phytophthora capsici was still unknown. RESULTS: Here CesA3 protein sequence was retrieved from the NCBI protein sequence database We did the 3-DS structural modeling for CesA3 and used molecular dynamics to optimize the model. The model was further validated by the Ramachandran plot in PROCHECK program. Two series of new valinamide compound were synthesized and tested for its biological activity. The docking data obtained by the model perfectly matched with the biometric data, indicating that the model is valid. Moreover, docking study data revealed the mechanism of action of inhibitors on target enzymes. CONCLUSION: The 3-DS structural model was analyzed from the perspective of the biocide receptor, the structure of the target protein and the mechanism of action of the compound. It provides a new perspective for the design of new fungicides. © 2019 Society of Chemical Industry.


Assuntos
Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Glucosiltransferases/genética , Phytophthora/genética , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Phytophthora/efeitos dos fármacos , Phytophthora/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...